Commit 94540f77 authored by Jens Ehlers's avatar Jens Ehlers
Browse files

Python intro update

parent 036628b2
......@@ -184,21 +184,22 @@
(1, 2, 3)
%% Cell type:code id: tags:
``` python
{"apple": "a fruit", "banana": "an herb", "monkey": "a mammal"}
a = {"apple": "a fruit", "banana": "an herb", "monkey": "a mammal"}
a
```
%%%% Output: execute_result
{'apple': 'a fruit', 'banana': 'an herb', 'monkey': 'a mammal'}
%% Cell type:code id: tags:
``` python
{"apple": "a fruit", "banana": "an herb", "monkey": "a mammal"}["apple"]
a["apple"]
```
%%%% Output: execute_result
'a fruit'
......@@ -332,14 +333,13 @@
%% Cell type:markdown id: tags:
**How to Read Python Error Messages**
Python error messages
`TypeError: Can't convert 'int' object to str implicitly`
Python error messages `TypeError: can only concatenate str (not "int") to str`
Above the error message is the "traceback" also called the "call stack". This is a representation of the sequence of procedure calls that lead to the error. If the procedure call originated from code from a file, the filename would be listed after the word "File" on each line. If the procedure call originated from a notebook cell, then the word "ipython-input-...".
Above the error message is the "traceback" also called the "call stack". This is a representation of the sequence of procedure calls that lead to the error. If the procedure call originated from code from a file, the filename would be listed after the word "File" on each line. If the procedure call originated from a notebook cell, then we see the "ipython-input-...".
%% Cell type:markdown id: tags:
## Equality
......@@ -393,11 +393,11 @@
False
%% Cell type:code id: tags:
``` python
(1, 2) is (1, 2) # tuples compared by value
(1, 2) is (1, 2) # if tuples are compared by reference or value, depends on your Python version
```
%%%% Output: execute_result
True
......@@ -518,11 +518,11 @@
function()
```
%%%% Output: execute_result
<generator object function at 0x000002122AA82900>
<generator object function at 0x0000017816A305F0>
%% Cell type:code id: tags:
``` python
for y in function():
......@@ -661,11 +661,11 @@
plt.plot([5, 8, 2, 6, 1, 8, 2, 3, 4, 5, 6])
```
%%%% Output: execute_result
[<matplotlib.lines.Line2D at 0x21229948be0>]
[<matplotlib.lines.Line2D at 0x17858c222b0>]
%%%% Output: display_data
![]()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment